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ON r-MINIMAX, MINIMAX, AND BAYES PROCEDURES FOR
SELECTING POPULATIONS CLOSE TO A CONTROL

by

Shanti S. Gupta and Ping 1siao
Purdue University and University of Michigan

ABSTRACT

Let- A' . be (k+l) normally distributed populations

and let F, be a control population. Our goal is to select those

populations which are sufficiently close to the control in terms

of the (unknown) means of the populations. A zero-one type loss

function is defined. -r-minimax rules, Bayes rules and minimax

rules are derived for this problem and compared. Some optimal

properties of f,-minimax rules are shown; also(I-minimax rules

are derived foi! distributions other than the normal.
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ON F-MINIMAX, MINIMAX, AND BAYES PROCEDURES FOR

SELECTING POPULATIONS CLOSE TO A CONTROL*

by

Shanti S. Gupta and Ping Hsiao
Purdue University and University of Michigan

1. Introduction and summary

Problems of selecting populations close to a control arise

frequently in industrial production, in situations such as for

matching parts. Assume that we have (k+l) populations and one

of them is the control or standard population. Our goal is to

select those populations which are sufficiently close to the

control. Many authors have considered problems of comparing

populations with a control under different types of formulations.

Paulson (1952), Bechhofer and Turnbull (1974) discussed problems

of selecting the best population if the best population is better

than the control. Dunnett (1955), Gupta and Sobel (1958) considered

problems of selecting a subset containing all populations better

than the control. Lehmann (1961), Tonq (1969), Randles and

lollander (1971) dealt with problems of selecting populations

better than control. For problems of classifying a set of

populations into three groups which are 'superior', 'inferior'

and 'equivalent' to a control, see Kim (1979) and Gupta and Kim

(1980) and related references therein. However, not much work has

been done for the problem of selecting populations close to a control.

*This research was supported by the Office of Naval Research

contract N00014-75-C-0455 at Purdue University. Reproduction
in whole or in part is permitted for any purpose of the United
States Government.
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Singh (1977) and Gupta and Singh (1979) considered this problem

and derived Bayes (and empirical Bayes) rules for various distri-

butions. In this paper, r-minimax rules for selecting populations

close to a control are derived, and these are compared with

minimax rules and Bayes rules for robustness against the prior

information. In Section 2, definitions and notations are intro-

duced and a decision theoretic formulation of the problem is liven.

Results in Section 3 and Section 4, deal with the cases when all

populations are assumed to be normally distributed. '-minimax

decision rules are derived when the control parameter 00 is known,

and restricted F-minimax rules are derived when 60 is unknown. In

Section 5, some optimal properties of F-minimax rules are found.

In Section 6, results of Section 3 are generalized and F-minimax

rules are derived for distributions other than the normal.

F-minimax rules for selecting binomial populations with large

entropy are also discussed. In Section 7, 00 is treated as an

unknown. Bayes rules are found under the assumptions that 0 has

a normal prior distribution with mean 'i and variance F 2 , i 0,

1,...,k, which are assumed known. Minimax rules are also derived

in this section. And Bayes rules, P-minimax rules and minimax

rules are compared in Section 8 in terms of the Bayes risk, the

maximum risk over F and the maximum risk over all the possible

prior distributions.

2. Notations and formulation of the problem.

Let 0, .. , k be (k+l) independent normal populations with

2 2 2
means 'O ''l'.. 'rk and known variances 01 2 ,...,2k, respectiv'ly.

Assume that i*0  s the control population, with mean 0 which may

| 0
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be known or unknown. For I, ...,k, the treatment populations,

0 1...,0k are all assumed to be unknown. When 60 is unknown,

let 0 = (001,0 '..., 0k) and X = (X0 ,X1 ,..., Xk) where X. is an

observation from H., i = 0,1,...,k. When 00 is known, no

observation from 11 is taken, and OO, X0 are deleted from 0 and

X, respectively. When there is no confusion, 0 and X are used

to represent either case. Let 9 be the parameter space and x be

the sample space. For i = 1,2,..., k, define G.= {PE fi-lo0

and B i = {0EI3 0Ji-001 > A+LA where A and - are given positive

constants. H. is said to be good (or acceptable) if 0G i and

bad (not acceptable) if OEB.. We consider decision rules of the

form 6(x) = (6 1(x).....k(X)), where 6i(x) denotes the conditional

probability of selecting H as a good population given X=x. The

objective is to select all the good populations while rejectino

all the bad ones. Let L 1 be the loss incurred when we fail to

select a good population and L 2 the loss for each bad population

selected. The the loss function is defined by

k k
L(0,6) = [ L (1-6i)IG (0)+L 2 iIB (0) = 1 (i) (! , ). (2.1)

i=l i i=l ' "

Where IA denotes the indicator function of A. We assume that the

partial information available is of the form: 1. has probability1

A. to be good and probability to be bad. Let = ( " I )

and A' = (. . We define * = Ili is a prior distribution

on .i, and F = ( , ') 
=  fi9*1P (G ) = l (B.) = , for

i l,...,k}, where 0 . 1 2 1 and P(A) = fdt('). Then,-- 1 1- AA
S(,A') denotes the class of all the prior distributions which

Ii
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summarizes our information about 0. We restrict our investigation

to this class. Let R(0,6) = E0 [L(6,6(X))] and r(i, ) E [R(,')i.

In this fzamework, an ith component problem is concerned with the

selection or rejection of Hi . Then R(i) (,6i) EO[L(i) (t,.6)H

and r (1, i= E IR i (0,6i denote the risk function and the

Bayes risk function of the ith component problem, respectively. It

is found that

k . k
R(R,6) R (0,6 i ) and r(T,6) = (,6i

~ i=l 1 i=l

A rule 6* is called a F-minimax rule in D if

sup r(T,6*) = inf sup r(i,6)
-E F 6ED tEE

where D is a class of decision rules.

3. Derivation of a F-minimax rule when e 0 is known.

In this section, 60 is assumed to be known. We define
Gi OEG 0i=HO+A), G {EB 1i) =00+A+

11 i0 i2 E.i1iC= 10 "1A}, B.1  110

and Bi2 = {0EBi 0i =H0-A-f.). Let 6i(x) = i(xi) be an ith component

decision rule and let gi(Hi) = EO. [6 i(Xi)], then we have
1

Lemma 3.1. For any fixed i, if inf gi(O ) = gi(00+A) qi((-
oEG . 1

1

and sup gi( g) = 0+(3 )
OEB. 1 ' ' "1

then

sup r (,6 i )=r (0,',i )  for all 1 o 0
TEF

where F0 (i) = fiEEIP (G )+P (G )=Xi,P (B )+P (Bi2)=r '
il T i2 i I i2 i
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Proof: r W (T,6 i ) = [LI(1-6i( ))di(O)
G.

1

+ f E0 [L2 6i(x) ]d ()

1

< L 1 -L1A inf c.(O. )4-L 2 X sup gi(Oi)-ii 1 'EG. 1 i 1 GEB.

L LAi-L IP (Gil)gi(O0 +A)+P0 (Gi2)gi(0 0 -A)}

+ L 2 {P1 (Bil)qi(%0+A+)+P (Bi 2 )qi (t 0 -A -f
0 0

= r ( O ( i ) for all 10  E F0(i).

This completes the proof.

k
Theorem 3.1. If there exists a * E fl F (i) such that ( *(x) =i=l 0

'*(xi) is a Bayes rule wrt 1* for the ith component problem and if
1 1

(3.1) is satisfied for gi(0i) E. [.(X)] for all i=l,2,...,k,
i1

then ,* = ...... 1) is a V-minimax rule.1 k

k Wi
Proof: sup r (i , *) Y sup r (- ,(\)

TE i=l iE F1

k
Y r(i)(,,) by Lemma 3.1

k W
r ( ) = r (:*,r) 'sup r(T,(')

i=l .

for all . This completes the proof.

Lemma 3.2. Let the pdf f(xl,,) of X be TP (Totally Positive of
3

order 3). If q() = E [I (a,b) (X) , and for some 0' q ( ' 0

(("-(! then q is increasinq for and hence decreasing for

0 0
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Proof: Let h(X) I(b) (x)-c for c E (0,1), then q (0)

where gc(e) = E0 [hc(X)]. Let S(hc ) denote the number of siqn

changes of the function hc , then S(h c ) = 2. Now by Variation

Diminishing Property (VDP)(Karlin (1968), see p. 21) it is seen

that S(gc ) < 2 for all c E (0,1). If g is not increasinq for

e < 00' then there exist 01 < 02 < 00 and g( I )  q( 2). Let

6 i = 20- 0 1 and 0= 200-02f then g(Uj) I g(%). We find that
S(g ) > 2 for c o  1/2[q(0 )+g(0 )], so S(g ) = 2. But q 0

c 0 0 1 2 c 0000
does not change signs in the same way as h does which contradictscO

VDP. This completes the proof.

Now let
1 [,.(x+:

q (x)
.01 1 1 1

3.2)

f (x) x ~-) X -
0. C.T7 0.1 1 2 1 1

x1 2

where (x) e 2 Then we have

Theorem 3.2. If 6*(x) (I*(xi) = I (xi and 0
1 1 1 [-tilt.] iG0

satisfies

L Af (t) = L i "41 (t.) for i=1,...,k, 3. 3)
1 1

then 6 = ( ...... is a I-minimax rule.

Proof: Let i* E ! be a prior distribution on --) such that ..

are independent under *, and P,( (i - +A + )1--I .- ', P *'

12) 2 1* 11 i 2

* 3, i

p (G. 2 ) = -i P=B 1 P *(i 2 ) for i'l,2,. ,k.

k x.-.Let f~x,} I 1 ii.

Let f (x)- ) then we have
=1 ( 01
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r (T *,6) fl L(1-6Kx) W f (xlo)P
x OE G ilUG1 2 T*

+ L 2 6* Z~x f(xjefO (~x

UEG i
If we let C(x1 , ...,Ix -1 x 1+l,... ~Xj k x.i- 0-A

2g. a

A. x. i- 0 +A 'X 1-e( -A-i

It 1 - 1 ,,( 1 0

Y. f(xIo)P,*(O)
OE B 2

x.-O0 +Ar ,then

x 1

+ l/2Js.(x) [L A'f (x )- LA (x -o )icl .. ,x ,x

Cx -00 1)- q i- 0 ci-, i+

Xk (Ix.

Hence the Bayes rule for the ith component problem wrt i* is

(X (x l if L1 Aiq) (xi-f' 0 V L 2 Xlf( (xi-f%)

1 ~) 0 if

f (x) coshUf+ L X ' ! 1.
Let h.i(x)= .L2-AI (x =k

1~ (x coshXii 1 2

L2 11
where ki= L e xp[- 22 ) then h. Wx=h. (-x) and h. (X) is

inc:reasing for x -0, hence h.i(x) _I if and only if Ix,

where t. 0 satisfies h.(t. 1. So, K, (x )=I (x- .I 1 1 1-t.,t 0



Now, if gi(0i) = E [6*(Xi)], we find gi(Oi+P0)=gi00-oi).
1 0. i 1

Also, X i  N(Oi,0 ), so the pdf of X i is TP, hence TP 3 from

Karlin (1968) (see p. 18). Now, by Lemma 3.2, (3.1) is satislied,

then Theorem 3.1 shows that 6* is a F-minimax rule. This finishes

the proof.

i lk
Let X/X' be defined as r If F(Y)={TC(*jP (G.)/P (I)

Yi for i=l,2,...,k} where Y=(yiy2 ..... Yk) , then we have (')=

f) f(A,'). Since 6* depends on A,P' only through A/A', we findA/A '=y ...

sup ret,6) sup sup r(j ,)

r(Y) I E/l, '=X ( , A

> sup sup
-/P '=-Y 1-1 ( k ( ,,'

sup r(r,6*)
TE (y)

hence 6* is a I-minimax rule for I = T'(y).

It is possible that (3.3) does not have a solution. In this case,

the F-minimax rules imply that all populations are bad.

4. A restricted F-minimax rule for 0 unknown.

00
When 00 is unknown, decision rules are restricted in a subclass

D', where D' = f6=(61,1" .....'k k ) p (x)= I0X for il...,k.

That such a restriction is needed was first pointed out by Randlt.s

and Hollander (14). The following lemma has been used by Miosc'kt.

(1979). The original idea of this lemma is due tn Ferouson (196/)

and Lehmann (1959).

Lemma 4.1. Let {r n be a sequence of prior distributions on

8 09, and let 0 be a Bayes rule wrt i for the ith c ,mionent problem.
in n

if

' ' " . .. ill . . . h . ..
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lim inf y (i) ( ,6 ) sup y(i) (t,6 )
n + n in IEU 1

for all i = 1,2,..., k, then 60 = (60 ,60....6 0 is a V-minimax rule.

A prior distribution T on 00 x 8 1 x ... x Uk can be specified

by the marginal distribution T on 90 and the conditional distribution

U) 0 on uIx. . .x 0k' given 00=0 0 . We use r=(T,%( 0 ) to denote such

prior distributions. Let i (T W*) hr, i nfrln , ), where Tn is uniformlyprior~ ~~ ditiutos Le Cn (n 0  n

distributed over the interval [-n,n] and 01,02 ... ,0k are condition-

ally independent under w*0, and
0

P* (B, 1 00 ) = P (Bi2 00)
0 0 0

A.
* (Gil 0 ) = P (G - (4.1)

P *{ok 
I++ ! - for i=l,...,k.

60 i0 I- 1 .

Let w*k denote the conditional marginal distribution of C,. under
0'1

Then, we have
0

Theorem 4.1. When 0 is unknown, a F-minimax rule in D' is qiven

0 0 0by A0 (0.) where 60(x) = I (x-x 0) and t' 0

satisfies

2 2 112L ) ,q .(t' ) =L f , (t!), with (,'=((i i ) 24.

1 1

( , and f", are defined in (3.2).
1 1

1 x
Proof: For n defined above, let h (x) : C--) , then

nn

i (n' i): n LI(I-E00 0 [ i(X 0 ,Xi )])d * ,

+r L2 EfI 6 (X X)1. (x (IT0n2-)0 O1i 0 i 0
j "o0

ggde-
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- L - -ng(i-O ) ho 0'X- 0 odxidx

-00 -00 -n 0 1 0 0 0

Ll i f 2 f ag 6(x 0 ) (X 0  ) 0 dOo ) x d0o

-n 0 0

Hence, the Bayes rule wrt T nfor the ith component problem is

n

1 if L A!f (x -e)h (x - 0 do 0
21-n 0

0 nn1 i Li ff0. (x i-0o)h (x O0 o)d 0

-n -n 0

and the Bayes risk of f0 is given by

in

W 00 n

(i n6 in) f _fmin{ 4n - _ 0 (xi-0 0)hdo(xO-60 )do '

-0 - n i 0

L~ i n

4n 1f f. (x1 -0 )hG (xi-0 o)dOodXidXo"

-n i 0

00
Ndw thser ayes riskg of isvenaby

I- 0Xo=nYi-y 0
for the inside integral.

a(xi'o) 0

0 O M, o L lX i n (Yi+l)
r~ (T 6? f fmin{ 4  f g (Yo+no)ho O -O)d l O

'n in _. -00 2 n(Yi-l) 0 0

L2x, n (Yi+l) 1i f (yo+no)-ho (-n }d x yidYo •

2 f (-1 o0

n~yi-n) .i 0



it is known that

f (x-a) x-b b-a

Va+n
hence

fg,.(nl1 -a)h U( 0 o-b)dn 0 =9(3 ,(a-b)

and (4.3)

ff (n0-a)h( hn0-b)dn0=fC,,Ca-b),

where

o' 2+(Y 2) 12 Now by Fo's lemma and (4.3), we get

W 01 L 1A x
Urnn inirCT n) > f f mi{2 21

(4.4)
W L 1 A L A!

2 mi( g1() 2 f ,Cx)}dx.
2 1

On the other hand, for all i=(T,w 0 )Er

W ([gLi'6Z0 f o L(1lE0  [6 0 (X.-X0  u) (.

looI > A+cL2 0oi- 0 0 16ixo)]d0 0  (O.)dTC 0 )

L A [1-inf q. Cn-)1+L A'sup q. CTI.
1 i Irli I<A 1 '2II>jA+( 1 1

wher n =0 -0 (n)=E [6 0(Y91J and Y =X -x

Since Y.'\Nhrt.,1 2 ), so as was shown in the proof of Theorem 3.2, we have

sup q.n)=gi(A+)=g.-A-F)

and (4.5)

inf qi Cri)=qi (A)=gi C-A).

Thus,
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(i) 0 gi(A)+gi(-A) gi(A+C)+qi
r (T,6)<L A 2 ]+L2 A[

LIi 122 2i

= iYi)]g 1Yi)+ 2 6(yi)fO,(y)dyi
2 i  U ! 2

1 .0 1

= min - -g ,(x), 2 fo ' (x)}dx. (4.6)
- l 1

By (4.4), sup r (r,5 0) < ln inf r(- ,601
) < i i fl nin

TE F - n- i

for all i=l,2,. .. ,k. Lemma 4.1 now implies that 60 (60 . 0

is a r-minimax rule in D'. This completes the proof.

5. Optimal properties of the P-minimax rule.

Suppose that we have ni independent observations X

x i from Ri' i=f,2,....k.

n.

Let XI xij, then the F-minimax rule is of the form
in. n. j_

6*(x )=I (x -e (5.1)
1(in. ) [-ti(ni)'ti(ni] Xin '-0

where ti (ni ) is the positive root of the equation

2 2h.(x)=k! cosh(ni(A+t )x/o /coshfniAx/o 2i  = 1

with k! = L A'/(L, )-exp-n (2A+F )F/2k .
2 2i 1

Consider

f (x)=kt exp{n (A+F)x/o 2 /expfni x/a }

and

S 1 (A+ 2 2
g = 2 iexAkn( /niexpn i Ax/

Then, gi(x) < hi(x) < fi(x), for x > 0.

1_ 1. .. ...1
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Let ri(n.) and si(n i) be the only positive root of gi(x)=O and

f.(x)=O respectively, then ri(n i) > ti(n i) > si(ni).

a. n(L A/2L A.)
Now, r.(n) = + - 1 2 i

1 1 2 n.E1

2 t (L2X!/LIX

s (n  
A+ 2 

1

hence lim yi(ni)=lim ti(n)=lim s(n)= A+
111 1 12n . - n -i n

Then,

lim inf E. [61(Xin H

ni i-001<A 1 1 -

ti (n i ) -A -t i (ni ) -A

lim [I( 1 - 1 )]=I (5.2)

1 1 1 1 1

and

lim sup [6t(Xi )]
n i o ) i-  01>A+E I i1

t i (n i)- (A+ f) -t i (n i)- (A+ ) 0= lim P - () ,( .{
n 0.. ,./ 7. n--

n. i 1

1. 1 1 1 1

for all i=1,2, . k.

Theorem 5.1. lim sup r(,,6*) = 0,
m i n ( n I  ... .n .... r A -

where A* (I[*....6*) is the I'-minimax rule with 6i defined by

(5.1), for i=1,2,...,k.

Proof: siup r(T sup r(i)
sup I, C sT
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n
• Ll.i(l- inf E [6i(X

i'=l 6-06 0 <A i i

+ L sup E0 6* (X )
+ L2 ili 0 > +: ' . I Xin.

Hence, by (5.2) and (5.3)

lim sup r0(,6*) 0. This completes the proof.
min(n I ..... nk )-- TEF

When 0 is unknown, let 60=(60'....'6 k and

Se i (x ini )= ti(ni'n0),t(nin0) (Xbiny 

2 2where t!(ni,n 0 ) is defined in (4.2) with 13i and o 2 replaced by

a 2/ni and o02/n 0 respectively. Then lim sup )-( , 0

i 0a i n (n 0 , .... n k )  ....; I ( ' : .

also holds. The proof is thus similar to that of Theorem 5.1 and

is omitted.

In deriving the r-minimax rule 6*, we have proved that ?,* is

a Bayes rule wrt T*. It is easily seen from (3.4) that * is the

unique Bayes rule wrt i*, and hence it is admissiblu.

0 0
Theorem 5.2. When 0 is unknown, the 1'-minimax rule 6 0=( .

is admissible in D'.

Proof: Let T =(T 0 Pw*) be a measure on -.j such that T O is
'00

Lebesgue measure on 0 and i 0 is defined by (4.1). Then for
00

k .. ... .

all 6ED', r )= f -i L1 (-. x0 . )) .f- 0)hL 1- )x

1 ). h 2 1 0i0'

+ L2 i(x0,xi)f, (x 0 (x - 0)d d'do
10

k . . q xx)xJy.~~ ~ f 1 "1 -0 l,(i-Od
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g L__ i0
+ 2ii'x) --2---f (x0-x0 2 g0, (xi-x 0 )]dxidx0

by (4.3).

0 0
Hence, the generalized Bayes rule is given by =(U1 ...."'k

where

1 if X!L2 f0. (x.-x0 ) - L g, (xi-x 0 )

60 (x ) = 2 
1

(0

which is exactly the rule we defined in (4.2). Also, S is the

unique (up to equivalence) generalized Bayes rule wrt -0 in D',
o 0

and r(r 0 6 0 ) < -. Hence S0 is admissible in D'. This completes

the proof of Theorem 5.2.

6. Relaxing the assumption of normality.

In this section, N %'s are not limited to be normal populat ions.

Let Xi be an observation from 11i with pdf fi(xlfv) and let A.

ixIL 2 1 [f (xIOo+A+,)+f (xIO0 -A-r)]

L i[f i(xo0 +A)+fi(xIo 0-A)] I for i=l,2,...,k. (6.1)

Theorem 6.1. Let gi(Oi) = E(, [IA (Xi)] where A i is defined by
S= A. i i

1

Proo: Let * be defi(ud as in the proof of Theorem 3.2, ther

the Bayes rule wrt i* for the ith component problem is qive r by
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i(x) IA (xi). Now, since gi is symmetric about 00 and gi(oi)
1

is increasing for 0• 1 00, so

sup gi(0 i )=gi.(O0++c)=gi ((o-A-t) and
l e i -0 0 I>A+E-

inf gi i)=gi(00+A)=gi(H0-A).
le i-00A 1 1 1

Then by Theorem 3.1, we conclude that 6 is a F-minimax rule.

As an example of this theorem, we consider the problem of

selecting binomial populations with entropy larger than a given

constant. For i=!,2,...,k, let 1lib(n i , 0i ) and 4 (1 )= -Ui lt i-

(l- i)tn(l-0 i) where ni is known and 6. unknown. Y(11i) is the

entropy associated with Hi. Define IIi to be good if q4'(.i) v+I'

and bad if Y( i ) < P. This is equivalent to saying that 11 is

good if 1  < A and H. is bad if 16i  2 (11
+A =8 £ 21 1n i ( A- -

where A and c satisfy *( 1 and 1

1 n -x n.-x
L ! ( +A+C.) (Y .- + (1 +P, +' ) (

Let h i (x)= 2li L 2 +A) ( -!.- 21 n + 2
1 L 1.X 1x n 1 -Xii ( -+ (. -,) +( . +,:), ' ( -A,)

n. n.
we find h i ( 1 +x) = hi (2I -x) and

h. (x+l) n. -1
h, 1 if x > =, H--. Hence h. (x) is decreasiniq

lI

n n
for x < - and increasinq for x -- Now, in view of (6.2), wo

1
find 00 -2 so that

1 .Y

i 2 i 1 i

L [f (x I ' 4A)+f. (X -A- )X

Li '
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n. n. n n.-x
=x-- -m. < x < I+ mi, where f. (Ixl)=(1)ox(l-,) 1 and-in - 2 1X

n. n.
+m. satisfies hi(- + Mi) =1. Then,

2 1 i2 1

gi(6) = E. [IA. (Xi) ]= E0 . [IA. (ni-Xi)]
1 1 1 1

E F [I (Xi)I=qi(1-Oi), so gi( +0 )=gi( . Now, by~1-0. A. 1 1 C)i~.--'.1 1

Lemma 3.2 and Theorem 6.1, 1 . k ) with .i(x.) =

(n./2-mi.n (x.)2+m. I is a F-minimax rule.

A density function f(xlO) is said to be a PF (Polya-Frequency)

function if 0 is a location parameter and f(xf') is TP. It is

known that if X has a PF density f(x-) and f(x)=f(-x), then X

has a TP density (see Karlin (1968) p. 738).

Hence,
f (x+o 2) +f (x-O 2 )

f (x+,11 +f x_ 1, , (6.),

is symmetric about 0 and is increasing foi x 0 when 0 2 0.2 1

Theorem 6.2. If X. has a PF density fi(x!0.)=f.(x-1) and

f. (x)=f (-x), thien the assumptions of Theorem 6.1 are satisfied.

Proof: Now A. defined in (6.]) reduces to1

Ai{=fX 4I-tIx- t by the monoto-nicity of (6. 3)

Then [iA. (X i ) 1=P[-ti+!'. Zi+ 'i ti+(.0
1 1

where Z =X.-'.. Since Z. and -Z. have the same distribution, it1 1 1 1 1

follows that so ( ' + 0)= ( ' 0- .i  By Lemma 3.2, the assumpt i, .s

of Theorer, G.1 are satisfied.



An example where Theorem 6.2 is applied is when i: has a
C , -Ci ii i-( i!

double exponential density fi(xl" i)= - e for .

In this case the F-minimax rule is 5=( i1 ..... k ) with

-ciixi-(0-t-I -C x
1 if i z e +e 0

X L -C 1" -C X- +'I ci xi- 0: 0
e +e

6 i (x i) =

7. Bayes rules and minimax rules.

In Section 2, we assumed that partial irLformatiort ,bwit h.i

known and is summarized in the class :. In this s ect i't, we

consider two extreme cases, namely, either complete intformat I(!l

or no information about j is known. Then we are int---reisted Ill the

Bayes rules and minimax rules respectively. The problem will be

treated under the assumption that 0 is unknown and X. N(.,, )2
0 1

for i=0,l,... ,k. Assume that has a normal pri)r (Jlstribution

2 2
with mean (i and variance 3i, then 0 N(a.,b.) where

2 2 22
Ii 0i +xiand b

a 2 2 1 2 2 With the same loss funct ion ioi

defined in (2.1), it can be easily shown that the bayes ruil. ,:;

B. B B
-B=(61 ..... k ) where

1 if L2 P [ I : - ;O ,'+ 'x :' ] ' ' l t[' -... 0 ' ' 
9

I

L2[(-i -  ! )+iy i -fI-' ')ii

1 if 2 1 J. 1 1i

11 (7.1)

. . .. .. . .0
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1 if lyi< B

- o

ai-a 0 A! A b - l ,=/b2+b2 and sB is
where Y b i b! i

1 1 1

the positive root of the equation (7.1) with inequality replaced

by equality. The following theorem determines the minimax rule.

Theorem 7.1. Let a=(al,a 2 ... ,ak) and i=(i,],.... ) and let

M M
S=('k.....6 k be the i'-minimax rule in D' for J= (a,l-a) (see

(3.3)). If a. is chosen such that qi(ai)=l for all i=1,2,...,k,

where

t. (a) +A+ -t. (a)
1 1

(a) t -a- 1 1 (7.2)-i a = _ i (a) +A  -t (a) . •

1 1

then ',M is a minimax rule.

Proof: For OEGi, R(i) ((,,,>m )=L P[Ixi-x 0 1_ti (ai ), 0 ,.

L P - t i (a i ) -( i- 0! ) t i (a i  + (p i- ( 0 
)

11 1 1

-ti(ai- -t i a i)+A

L f$( 1 1
1 1

Similarly, for OEB i ,

tiai)+_+_ t (a1

2 t -- " "! --! ".

1 1

M(i) M

Tf (VB ;G.r then R i(, )=0. Now from (4.4) and (4.6), w(- (;et
1 1
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lir inf r W (Tn,6.0
n in

> L(a ai+ -ti (ai)H
1 i

ti (ai++ -ti (ai+,

+ L2 (1-a)[( [ ( 1 - (
ci 1

-ti (ai)+A -ti (ai)-A
= Ll[ ( D)+¢( '

1 1 1

t i ( a i ) + A + - t ( a i ) + +

1 1

_ sup R (0,6M ) for all i=l, . . ,k.

-. k
Then, lrn inf r( n,d ) _ [' urn inf r '(:n in

sup R (C, ) > sup R(0,6 ).

i=1 e E1-E9

It follows that M is a minimax rule.

L (1-a) fo (x)

Let yi(ax) =- ___(x (7.3)
i L Ia q .'(x)'

1 a.

then yi(a,ti(a))=l by (4.2), which implies that ti(a) is a

continuous function of a by the implicit function theorem.

Hence qi(a) is a continuous function of a, for 0 a l. Now,

lim qi(a)=lim qi(a) = by (7.1) and (7.2). Also, for
a~l t (a) -...1

0 L2ep- (2+ 0/o
al Ll+L exp[-f (2 + )/2(i21' i "

12

qi(a i)=l. This shows that a minimax rule always exists.

I..
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8. Comparison among Bayes, l'-minimax and minimax rules

When one faces a decision problem, the choice of the optimal

rules depends on the prior information one has. In general, one

would use Bayes rules if the prior distribution is known exactly,

use '-minimax rule for incomplete prior information and use

minimax rule if no prior information is available. Hence one is

interested in studying the robustness of these rules against the

assumption of the prior information. In this section, we compare

these rules in terms of the Bayes risk, maximum risk over 1' and the

maximum risk over D*. Since the loss function is assumed to be

additive, the comparison is made for the first component problem

only. In this section, x=(x 0,xl), 0=(A 0,A1 ) and diB(()=dt0( 0)d l I

where ii 'N ( ')for i=0,1. Let B(x)=I1 _tB,tBbB 1- Be B aI- a 0 ) be the

2 2

Bayes rule wrt i (see Section 7), where a. - - for i=0,1.
B 1 .2+P2

1 1

Also, let 6G(X)=I_ (Xl-X0 ) be the F-minimax rule in D' and
[, G

M (X)=I[_tMftM] (x1-x0 ) be the minimax rule. Define rl()=r (I) 'B' '

(1) i ( )
r2( ' )= s u p  r ,) and r 3 (,,

)=sup r (1,6)

Then, rl(HB)=LIP [al-aO !tB' ,K-'§0K A+L 2 P [al-aOitB[l-' - +1"
I B 1 1B 1 0 B 2 B I O 'B 11 0

4
2 iLet d = -,0 wi~ 2 2' i=0,l

1 1

2  2 an 2 2  2u = ,+I and v =w0+w I . Then, we find that
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:))Nwhere p V

u

Hence r I (rB) =

L1 {F(-BIC;-p)+F(-BID;-p)+F(B2,C;p)+F(B 2,D;(,)

+ L2 {F(BID-A;p)+F(B21D-A;Q)+F(BI,-C-A;p)+F(B2 r-C-A;-,) 1,

tB-d -tB-d
where B B A= C A-d -A-d and

- = U U

F(x 0 ,Y 0 ;p)=P Zl<x0 ,Z <y0 ] with 1) ',N ((, 0 )

Similarly, rI(6G)=LIP [IXI-X01>tGI- 001<A]+L 2P BX 1-t_ 1 0
L1 [F(-G I C;-p')+F(-G I D;-p')+F(G2,C; p ')+F(G 2,D; 1')

+ L2 [F(G I D-A; o')+F(G2 ,D-A; D')+F(G1 ,-C-A; -> ')+F(G 2 ,-C-A;-i')

t -d d
where G G 2 2 2 2 . u

G 1  G 2 - , '( =00 +I and -.

Since G and M have the same form except for the constant tG
tM-d - tM-d

and tM, so if we let M 1  t 2  Y - and replaces G,|

G 2 by M i, M2 , respectively, in the above formula, we get rI (,,M).

The followinq lemma is used to compute the maximum risk over '.

Lemma 8.1. r2 (',)=LI 1 (I- inf E [ (X) )+ 21 Sul) +(X)I.

________1- (1 21

P roof: is trivial. To prove the other inequality, let I;-
and {O'} be two sequences such that 6i - V(i 1 - 0 L /

n' (0 "' ' A+ } and E,, [ (X) 1 inf M [ (X) I
-n 1- 0 -.
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EO, [(X) sup E[6(X) I Let i n[ be defined by P [0=( '
nn 1n

and 1' [I)=) I ==A, then
I n ( 1n

r 2 (S5)=supr (1) (1, )>1im r i)(Tn'6)=LlAl[l- inf E0 [6(X)])
-: r -n* 6 -Oo 1: <A

+ L2 A sup E0 [(X)J. This finishes the proof.
2 60

-t G- -tG +
From Lemma 8.1 and (4.5), we get r 2 (6G)=L -A[I+( ( H

t-
+ L 2  Oi G0

t-A-1-tG -t -
When t G is replaced by tM , we get r 2 1 6 M)= ( k l+X2 )L I [ ( -)+.(..

-11

To find r2 ( B), first note that al-a 0 (01 6 0%N(,r 2) where

i.2 f 2 0 t 2 2 4 2 42
'I I -00 + 11 0 0  2= _11 0 0

2 2 2 2 2 2 2 ) and 2 2 2 + 2 2 2 Let+O°O[0 (f31 u1  (P'0
+-c

01 1 0 0 11 0

tB -tB -(j.

JB =E) F ['B(X) ]=Pj [-tB<a -a 0"_tB

then q B(:)gB(-J) and 913" is decreasinq in H.
We consider the following two cases:

2 2 2 2n0 1 K' ______ t en [ '"

(,I) if - 1 then 1 2 . Let i=0 then
2 2 )2 +2 2 2 0

~0 1 t 1 +T1 0+

'o, inf E B[ (X) =lim qB(Io)=0 and sup E IVB(X) =,I ,( 1
1 f I- f)B 0- B I -X 0) -V'(

because ( It=o 0i=0 'l f - -A+ } ,. Hence, r VB) I(+= I >+L21A(0).

2 2

(b) If 'T 2 o then =e 2, [eW 1 - 0 )+e 2 (X1 0)] So, when
10 1' 1+e 2 2.+2

j-" , the maximum value of ij is i 0

(8.2)
+p!
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When j01-601>A+E, the minimum value of IpI is 0 if e2 i- 0i+

and is

1 [(A+c)-e 2 l e 2 Icl-c 0 j<A+E. (8.3)

1- +e 2

Hence, we get

L1 All-gB(P 0 )]+L 2AigB(O) if e2I(Zl-d0 >A+f

r 2 ( 6 B)=

LlAl[l-g B( 0)1+L 2XgB(Pl if e 2[l-_X0 A+,

where gB is defined in (8.1). To find r 3 (.), we need the followinq

lemma.

Lemma 8.2. r3 (6)=max{Ll(1- inf E8 16(X)]), L2  sup E1 [\(x)] .3o e1-o0j< 9 2 10 o- 001-'A+0

Proof: The proof is similar to that of Lemma 8.1.

-tM-A -t+A

Now, from Theorem 7.1, r(6)=L[( t M M-)+4( -t +A

1 1

tM-A-E -tM-A- -tG-A

L2[()-(D( M- )]. From (4.5), r3 (6G)=max{Ll[¢( - ,
- ) +

tG+A tG-A-_ -tG-_-_
__ G +A L 2 [ ( - )-D( -t G , . We also find that r ( ''

a2 2 2 2
0 1 0 1 2

max{LiL 2 gB(0)} if - For - - e
80 81 %0

MaxfL (1-gB (P0)) L2 gB(O) I if e I l-10 +

i r3r(6B )

MaX{Ll(1-q( 0 ), L2 gB(VA)} if

where p0 and p, are defined in (8.2) and (8.3). Thus we have

all the formulas needed to compute the tables for comparison.
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Table I, II exhibit tBP tG, tM and r i(6) for 6 = 6BISBI and

6M , i=1,2,3. They are arranged in the following manner:

tB r 1(6B r2 (
6B) r 3 (

6B)

tG  r l( G r2(
6 G) r 3( G)

tM r1(6 M) r2( M  r 3( M)

2 2
l '0 2 2The tables are computed with n - and (c0,10 )=(0,1). Then1 no

selected values of the variables are:

2
(1) y is .2 in Table I and is .5 in Table II.

2
(2) (uia 1 ) is chosen as (0,.5), (0,1), or (0,2).

(3) A is chosen as 1. or 1.5.

(4) For A=1., c is chosen as .3 or .8.

For A=1.5, c is chosen as .5 or 1.
2 2

(5) For (i,B 1 ), A, f-, and a
2 fixed, X1 and X are computed

so that I BEF.
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2

TABLE I. 2 = .2

2 2A (L 1 1)=(0, .5) A=l. 5 ( 1i~) = (0, .5)

E=.3 A =.5858 XA=.2885 C=.5 =.7793 -. 1025

1.1500 1 .1303 .8687 1.0 1.7500 .0524 .8818 1.0
2.0944 .1798 .2828 .8955 3.3731 .0889 .1021 .9850
1.1503 .1512 .3553 .4064 1.7500 .0771 .3054 .34t,3

_=.8 ]i=.5858 X1 =.1416 E=1.0 X=.7793 =.0412 - -I
__.7793 1412

1.4000 .0508 .7268 1.0 2.0000 .0169 .8206 1.0
2.1098 .0619 .1207 .6879 3.1757 .0264 .0385 .8573
1.4001 .0708 .1917 .2636 2.0000 .0351 .1761 .2146 1

2 2A=I (l, )=(0 1) A=1.5 ((If 2 )=(OA
E=.3 A1=.5205 x i=. 3580 C=.5 x =.7112 Xj=.1573

1.1499 .1337 .3397 .5503 1.7500 .0647 .2104 .5628
1.6494 .1461 .3333 .7097 2.9570 .1066 .1546 .9349
1.1503 .1447 .3570 .4064 1.7500 .0804 .3008 .3403

_=.8_ >1=.5205 Xj=.2031 L=1.0 Ki=.7112 Ai=.0771

1.4000 .0576 .1597 .4247 2.0000 .0241 .0887 .4372
1.8706 .0619 .1545 .54441 2.8887 .0344 .0663 .730',
1.4001 .0690 .1907 .2636 2.0000 .0367 .1692 .2146

22
A=l 2 ,B )=(0,2) A=1.5 (Uli, 2 )=0 2

c=.3 )1=.4363 X'=.4529 E=.5 1= .6135 A=. 2482

1.1499 .1260 .8724 1.0 1.7500 .0725 .8614 1.0
1.1044 .1350 .3612 .4349 2.4739 .0982 .2298 .7732

I 1.1503 .1318 .3614 .4064 1.7500 .0810 .2984 .3463

A 1-=.4363 A=.2987 E=1.0 X i:.6135 Ai=.1489

I 1.4000 .0588 .7317 1.0 2.0000 .0304 .7624 1.0
1.5896 .0597 .1871 .3697 2.5663 .0375 .1088 .5418
1.4001 .0648 .1937 .2636 2.0000 .0376 .1636 .2146

I'i
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2
TABLE II. .5

A1 C 2 (0,.5) A=l. 5 (, 1, 2) (0,.5)

,=.3 A =.5858 Aj=.2885 . =.7793 ,=.025

1.1469 .1968 .8594 1.0 1.7500 .0803 .8815 1.0
3.5136 .2654 .2881 .9866 5.8077 .1022 .1025 .9999

1.1771 .2522 .3886 .4445 1.7509 .1579 .3541 .4015

=.8 = .5858 X'=.1416 1 = .0 X = 7  1 .0412
1 17 9 1=0 1

1.3991 .0928 .7249 1.0 2.0000 .0313 .8205 1.0

1.1767 .1131 .1384 .9157 4.9393 .0398 .0412 .992(

1.4117 .1562 .2533 .3482 2.0003 .0979 .2533 .3087

2 2
Al i =(16 0, ) A=1.5 (0,1)

3 N= 5205 \'=.3580 :=•5 =.7112 j=. 1573

1.1441 .2113 .3613 .6601 1.7500 .1066 .2081 .7340
2.4180 .2430 .3516 .8681 4.7675 .1517 .1572 .9972

1.1771 .2412 .3904 .4445 1.7509 .1592 .3487 .4015

A.8 Ai=.5205 =.2031 =7112 A'=.0771

1.3980 .1121 .1967 .6167 2.0000 .0493 .1008 .6915

2.5834 .1238 .1887 .7833 4.2218 .0659 .0761 .9574

1.4117 .1506 .2520 .3482 2.0003 .0979 .2433 .3087

2 2A=l 1,i, ) (0,2) A=I 5 (0i, 2•r =. ( iP)=(0,2)

=.3 A =.4363 )'=.4529 i=.5 ki=.6135 j=.2482

1.1409 .2058 .8343 1.0 1.7499 .]269 .8574 1.0
1.1754 .2212 .3952 .4452 3.5599 .1833 .2456 .9406
1. -71 .2210 .3952 .4445 1.7509 .1563 .3460 .4015

A i=.4363 A'=.2987 i=1.0 =.6135 _i
= . 1 4 8 9

13968 1205 .7177 1.0 2.0000 .0679 .7615 1.0
1.8999 .1230 .2423 .5397 3.4159 .0878 .1391 .8201
1 ].4117 .1409 .2559 .3482 2.0003 .0967 .2353 .3087



2 8

Discussion of the Tables

It is seen from Table I and II that:

1. Minimax rules compare favorably with ?-minimax rules in terms

of r2 (.), and with Bayes rules in terms of the risk 1

2. The Bayes risk of the I'-minimax rules is only a little more

than that of Bayes rules.

23. When (clB)=(O,1),the performance of Bayes rules is close to

r-minimax rule in terms of r 2 (.) and close to that of the

minimax rule in terms of r 3 (.). If (ClP2 )3(0,1), Bayes rule.s

show some large increase of risks y 2 (.) and f3(.) when comxpirtud

with F-minimax rules and minimax rules, respectively. To

illustrate the use of the tables, let us look at the followinq

example:

Example 8.1. Type H 0 (control) machines produce part P(p) where

p is the diameter of P, and pli!0 '1 N(6 0,1). Type 1'P;.2, and !1 3

machines produce part Qi (qi), and qilfli , N(Oi,l) for i=1,2,3.

Let us assume that when 10 i-e0 1 < 1.5, part P and part v1i can be

matched, and when lei- 0I > 2.5 they cannot be matched. Assume

that the partial prior information F is as follows:

P[10 1 -00 1 < 1.51=.78 P[( 1 -0 0 1 2.5)=.04

P[182-801 < 1.51=.71 P[l 2 - 001 2.5]=.08

P[1e 3 -00 1 l< 1.51=.61 P[u 3 -0 0  2.51=.15

Now, there are machines a0, ai, a2, a3 for sale where a Il for

i=0,1,2,3. Suppose we can take 5 samples from each machine ind

let Xi be the mean diameter of the samples from machine a.(P 0,1,2,3).

Since A=1.5, 1.0, from Table I, the "-minimax rule is:

. ... . . . .. - . .. i .. . .. . I l I I . . . ... .. . ... - ' . . .



29

a1 is good for a0 iff IX 1-X0 1 < 3.1757

a2 is good for a0 iff X2 -X 0  < 2.8887

a is good for a iff I X-X01 < 2.5663

If we feel the claim regarding the partial prior may not be

correct and we would rather assume that there is no prior information,

then we might use the following minimax rule: ai is good for

a0  iff IXi-X0l - 2.0 for i=1,2,3.

If from some other source, we know that 00 % N(0,1), 01 ' N(0,5),

"2 ' N(0,1) and 03 % N(0,2). Then, we might use the Bayes rules,

from Table I we get

* is good for a0 if 5 X R- < 2.0

a2 is good for a0 if J 2-X0ol 2.4
10 R3 5 x , 2.

is good for a0 if 1- - 2.0

If we are not sure about the definiteness of any prior information,

we may then use the rule which is most robust to the assumption of

the prior distribution. So from Table I, we may use F-minimax

rule for al, use Bayes rule for a2 and use minimax rule for a3.
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